BE-23372M, A NOVEL PROTEIN TYROSINE KINASE INHIBITOR II. PHYSICO-CHEMICAL PROPERTIES AND STRUCTURE ELUCIDATION

SEIICHI TANAKA, TAKAYOSHI OKABE, SIGERU NAKAJIMA, EISAKU YOSHIDA and HIROYUKI SUDA

Tsukuba Research Institute in collaboration with Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba 300-33, Japan

(Received for publication September 27, 1993)

BE-23372M, a new protein tyrosine kinase inhibitor, has been obtained as a reddish orange solid. The compound, $C_{17}H_{12}O_6$, HRFAB-MS: m/z 312.0625 (M)⁺, is an acidic substance, showing UV (MeOH) $\lambda_{max}(\epsilon)$ 266 (8,800), 426 nm (20,400), and IR (KBr) ν_{max} 1752(C=O) and 3298(OH) cm⁻¹. The structure of BE-23372M, (E)-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)-2(3H)-furanone, has been elucidated by ¹H and ¹³C NMR studies.

In the preceding paper, the taxonomy and fermentation of the producing organism, as well as the isolation and biological activities of BE-23372M have been described¹). We report here the physico-chemical properties and the structure elucidation of BE-23372M, a new protein tyrosine kinase inhibitor.

Physico-chemical Properties

BE-23372M was obtained as a reddish orange solid. The compound was acidic and soluble in dimethyl sulfoxide, acetone and methanol, hardly soluble in chloroform or ethyl acetate, insoluble in *n*-hexane. It gave Rf value of 0.27 (chloroform - methanol - formic acid, 20:2:1) on TLC (Kieselgel 60 F₂₅₄, Merck). The substance showed positive color reactions with

KMnO₄ and FeCl₃.

The HRFAB-MS revealed the molecular ion at m/z 312.0625 (M⁺) which was consistent with the molecular formula of C₁₇H₁₂O₆ (calcd 312.0634). The UV spectrum showed maxima at 266 (ε 8,800) and 426 nm (ε 20,400) in methanol (Fig. 1). The IR spectrum (KBr) indicated the presence of γ -lactone (1752 cm⁻¹) and phenolic hydroxy groups (3298 cm⁻¹) (Fig. 2).

The ${}^{13}C$ and ${}^{1}H$ NMR data in $(CD_3)_2CO$ measured at 100 MHz and 300 MHz, respectively, are presented in Table 1.

Structure Elucidation

The result of HRFAB-MS gave the molecular formula of $C_{17}H_{12}O_6$ for BE-23372M, which was supported by ¹H and ¹³C NMR spectra.

The ¹³C NMR spectrum of BE-23372M in-

Fig. 1. The UV spectrum of BE-23372M in MeOH.

Fig. 2. The IR spectrum of BE-23372M in KBr.

Table 1. ¹³C NMR and ¹H NMR data of BE-23372M.

~

1 1 1 1 1 1

Carbon	Chemical shift (ppm)	
	$\delta_{ m c}$	$\delta_{ m H}$
1	170.2	
2	123.3	
3	99.0	7.10 (1H, s)
4	156.7	
5	121.5	
6	112.9	7.32 (1H, d, $J = 2.1$ Hz)
7	146.3	
8	148.5	
9	116.5	6.93 (1H, d, J=8.3 Hz)
10	118.8	7.26 (1H, dd, $J = 8.3$, 2.1 Hz)
11	134.5	7.15 (1H, s)
12	128.6	
13	117.5	7.33 (1H, d, $J = 2.1$ Hz)
14	146.3	
15	148.7	
16	116.7	6.94 (1H, d, J=8.3 Hz)
17	124.9	7.24 (1H, dd, J=8.3, 2.1 Hz)
OH		8.5 (4H, brs)

Fig. 3. Possible structures of conjugated butenolides.

dicated the presence of one carbonyl carbon and 16 aromatic or olefinic carbons. In the ¹H NMR spectrum, the analysis of proton coupling revealed the existence of two 4-substituted catechol rings²). The IR spectrum of BE-23372M suggested the presence of γ -lactone (1752 cm⁻¹).

Since 12 aromatic carbons of BE-23372M were attributed to catechol rings, 4 olefinic carbons and one carbonyl carbon should belong to a conjugated butenolide. As two olefinic protons (3-H and 11-H; $\delta_{\rm H}$ 7.10 and 7.15, respectively) were singlets, 4 possible conjugated butenolides (A~D) were proposed (Fig. 3).

The HMBC spectrum of BE-23372M revealed that the two olefinic protons (3-H and 11-H) were coupled to the carbonyl carbon (C-1; $\delta_{\rm C}$ 170.2) and that two aromatic protons (6-H and 10-H; $\delta_{\rm H}$ 7.32

and 7.26, respectively) were coupled to an enolic carbon (C-4; δ_c 156.7). These data supported the structure **A**. Assignments of signals in ¹³C and ¹H NMR spectra were made by C-H COSY and HMBC.

Finally, the configuration of the olefin was determined by NOE experiment. As shown in Fig. 4, NOE was observed between 3-H ($\delta_{\rm H}$ 7.10) and 4 aromatic protons (6-H, 10-H, 13-H and 17-H; $\delta_{\rm H}$ 7.32, 7.26, 7.33 and 7.24, respectively). This result indicated that the configuration was *E*.

Thus, the structure of BE-23372M was elucidated to be (E)-3-(3,4-dihydroxybenzylidene)-5-(3,4-dihydroxyphenyl)-2(3H)-furanone (Fig. 4).

Among natural products, aspulvinones^{3,4)} are somewhat similar to BE-23372M. However, the structures of the conjugated butenolides are considerably different. Thus, the biosynthesis of BE-23372M is another interest.

References

- OKABE, T.; E. YOSHIDA, S. CHIEDA, K. ENDO, S. KAMIYA, K. OSADA, S. TANAKA, A. OKURA & H. SUDA: BE-23372M, a novel protein tyrosine kinase inhibitor. I. Producing organism, fermentation, isolation and biological activities. J. Antibiotics 47: 289~293, 1994
- RISCHMANN, M.; R. MUES, H. GEIGER, H. J. LAAS & T. EICHER: Isolation and synthesis of 6,7-dihydroxy-4-(3,4dihydroxyphenyl)naphthalene-2-carboxylic acid from *Pellia epiphylla*. Phytochemistory 28: 867~869, 1989
- GOLDING, B. T.; R. W. RICKARDS & Z. VANEK: New metabolites of Aspergillus terreus: 3-hydroxy-2,5-bis-(p-hydroxyphenyl)penta-2,4-dien-4-olide and derivatives. J. Chem. Soc. Perkin Trans. I 1975: 1961 ~ 1963, 1975
- OJIMA, N.; I. TAKAHASHI, K. OGURA & S. SETO: New metabolites from Aspergillus terreus related to the biosynthesis of aspulvinones. Tetrahedron Lett. 1976: 1013~1014, 1976